Modeling social behaviour in an uncertain environment, application in epidemiology

Laetitia Laguzet,
Gabriel Turinici (Advisor)

CEREMADE,
University of Paris Dauphine

PhD student day of DIM, Sept. 12th 2013
1 Motivations

2 Modelization of the problem

3 Boundary condition

4 Problems

5 Solutions provided

6 Current work and perspectives
Vaccine scares:

Influenza A (H1N1) (flu) (2009-10)

• At 15/06/2010 flu (H1N1): 18.156 deads in 213 countries (WHO)
• France: 1334 severe forms (out of 7.7M-14.7M people infected)

Vaccination in France

• Adjuvant suspected of some neurological undesired effects; mass vaccination uncertainty (few previous studies for this size)
• Very costly campaign (500M EUR),
• Low efficiency (8% to 10% in France with respect to e.g., 24% US or 74% Canada).
Previous vaccine scares (some have been disproved):

- France: hepatitis B vaccines cause multiple sclerosis
- US: mercury additives are responsible for the rise in autism
- UK: the whooping cough (1970s), the measles-mumps-rubella (MMR) (1990s).

Vaccine Scares: “as cases of a disease decrease, people become complacent about their risk, and the threat of vaccines (imagined or real) seems greater than the threat of disease” (C. Bauch)

Question: individual decisions sum up to give a global response. How to model this?
Outline

1. Motivations
2. Modelization of the problem
3. Boundary condition
4. Problems
5. Solutions provided
6. Current work and perspectives
General SIR model

\begin{align*}
 dS &= (\mu(1 - S) - \beta SI)\, dt - dV(t) \\
 dl &= (-\mu l + \beta SI - \gamma l)\, dt \\
 dR &= (-\mu R + \gamma l)\, dt + dV(t)
\end{align*}

With:

- μ: rates of birth / death,
- β: probability of contamination,
- γ: rates of healing,
- $dV(t)$: measure of vaccination, several possibilities
 \begin{align*}
 dV(t) &= \lambda(t)S(t)\, dt : \text{probability of individual vaccination} \\
 \lambda(t) &\in [0, \lambda_{\text{max}}] \\
 dV(t) &= u(t)\, dt : \text{speed of vaccination } u(t) \in [0, u_{\text{max}}] \\
 \text{General case: } dV(t) &\text{ is a (positive) measure on } [0, \infty]
 \end{align*}

Number / proportion of individuals vaccinated up to time "t" is $\int_{0}^{t} dV(s)$ increasing.
Subsequently, we denote $X = (S, I)^T$ because $S_0 + I_0 + R_0 = 1$.
Modelization of the cost

Cost for an infected person: \(r_I \)
Cost for a vaccinated person: \(r_V \)

Global cost for the society:

\[
J(X_0, V) = \int_0^\infty \beta S I r_I dt + \int_0^\infty r_V dV(t) \tag{2}
\]

With \(X_0 = (S(0), I(0))^T \)

It is an optimal control problem.
The value function of this problem is:

\[
\mathcal{V}(X) = \min_{w \in \Omega} J(X, w)
\]

And \(\Omega \) is the set of admissible functions.
Problem’s particularities

The value function \mathcal{V} must satisfy the HJB equation:

$$-\mathcal{H}(X, \nabla \mathcal{V}) = 0$$

Let $X = (x_1; x_2)^T$ and

$$f(X, w) = (\mu(1 - x_1) - \beta x_1 x_2 - w; -\mu x_2 + \beta x_1 x_2 - \gamma x_2)$$

Then

$$\mathcal{H}(X, p) = \min_{w \in [0, u_{max}]} [f(X, w) \cdot p]$$

$$= -u_{max}(p_1 - r_v)_+ + \beta x_1 x_2 (r_l + p_2 - p_1) - \gamma x_2 p_2 \text{ for } \mu = 0$$

But there is no a priori certainty that the solutions are C^1 (possible discontinuity introduced by V)

We use the concept of viscosities solutions introduced by Pierre-Louis Lions. Widely used for the optimal control problem.
Outline

1. Motivations

2. Modelization of the problem

3. Boundary condition

4. Problems

5. Solutions provided

6. Current work and perspectives
For $\mu = 0$, already encounter technical problems.

At the boundary $I = 0$ there is no natural boundary condition to use. If the system starts with $I = 0$ it will remain with $I = 0$ at all times but this behavior is unstable! As soon as $I(0) > 0$ (even very very small) and $S(0) > \gamma/\beta$ the value functions takes very large values (larger than $S(0) - \max(r_I, r_V)\gamma/\beta$) and do not converge to zero when $I(0)$ tends to 0.
1 Motivations

2 Modelization of the problem

3 Boundary condition

4 Problems

5 Solutions provided

6 Current work and perspectives
Other problems

The cost function has no damping term.
Work in infinite horizon.
In general, a convenient hypothesis (cf. also Crandall, Ishii, Lions [1992]) is:

\[\mathcal{H}(u, r) \leq \mathcal{H}(u, s) \quad \forall r \leq s \]

This is not our case.

Furthermore, the value function is independent of the time, it is a problem for uniqueness.
• Horst Behncke: "Optimal control of deterministic epidemics" use an optimal policy "all or nothing" (for a certain period in order to stop the epidemic). Do not use HJB. Passage to the limit inconclusive ($T \to \infty$).

• Alexei B. Piunoskiy et Damian Clancy: "An explicit optimal intervention policy for a deterministic epidemic model" supposes that the solution is C^1 so that they are perhaps suboptimal. Problem also when $\lambda_{max} \to \infty$.
Outline

1 Motivations
2 Modelization of the problem
3 Boundary condition
4 Problems
5 Solutions provided
6 Current work and perspectives
Our contribution

Using viscosity solutions allows to:

- Prove existence and uniqueness of the solution
- Show that the solution is C^1
- Characterize the solution
- Is compatible with the limit $u_{\text{max}} \to \infty$ (and also $\lambda_{\text{max}} \to \infty$)

Existence of the following level value of r_V. If $r_I = 1$,

- $r_V < 1$: several types of solution
- $1 \leq r_V \leq 2$: optimal to vaccinate a few people, but sub-optimal for an individual
- $r_V > 2$: no vaccination
Current work and perspectives

Let $\mu \neq 0$

Try with other contact form (such as $\frac{\beta SI}{S+I}$).

Comparison of effects of optimal policies (global or individual).

When individual policy, the disease never finished.