A few questions in random matrix theory

S. Péché, LPMA, Université Paris Diderot.

December 18 2012,
IHP, Lancement du DIM rdm idf
Random matrix theory

Wigner (50’s) Wishart (30’s)

Standard random matrices:

- Wigner random matrix: $H = H^*$ of size $N \times N$ with complex or real entries s.t.

\[
H_{ij}, 1 \leq i < j \leq N \text{ i.i.d. } \mathbb{E}H_{ij} = 0, \text{Var}H_{ij} = \sigma^2 < \infty,
\]

and independent centered entries on the diagonal.

Archetypal ensemble: GUE/GOE (Hermitian/real symmetric) $H_{ij} \sim \mathcal{N}(0, 1)$.

- Sample covariance matrices $M = XX^*$ with X of size $N \times p$ and the entries of X are i.i.d. centered r.v. with finite variance σ^2. p and N are comparable.

Random matrix theory: what is the asymptotic spectral properties of these matrices as the dimension goes to infinity? (eigenvalues and associated eigenvectors)
Motivations

• mathematical physics: statistics of energy levels of heavy nuclei (Wigner).

• mathematical statistics in high dimension: huge amount of data (genetics, microarrays, etc) estimation of the "true" covariance with the sample covariance matrix?

• finance (risk of a large portfolio depends e.g. on extreme eigenvalues), communication theory (capacity of some communication channel can be expressed in terms of RMT objects)

• connections with many other fields of mathematics have now emerged (longest increasing subsequence, etc)
Global behavior of the spectrum and Wigner’s theorem

\[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \] ordered eigenvalues of \(H_N := \frac{1}{\sqrt{N}} H. \)

Theorem Wigner [57]

Let \(f \) be a bounded continuous function and \(\sigma^2 := \text{Var}(H_{ij}) \). Then, almost surely,

\[\frac{1}{N} \sum_{i=1}^{N} f(\lambda_i) \to \int f d\rho_{sc}, \quad \frac{d\rho_{sc}(x)}{dx} := \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2} 1_{|x| \leq 2\sigma}. \]

Proof: moment method or resolvent approach
Local behavior: the complex Gaussian case

Density w.r.t Lebesgue measure on \mathcal{H}_N: $\sigma^2 = 1$,

$$dP_N(H_N) := \exp \left\{-N \text{Tr} H_N^2 / 2 \right\} dH.$$

Consequences :

- explicit joint eigenvalue density

$$f(x_1, \ldots, x_N) = \prod_{i<j} (x_i - x_j)^2 \exp \left\{-N \sum_{i=1}^{N} x_i^2 / 2 \right\}. $$

- eigenvector distribution is explicit: U the matrix of eigenvectors is distributed according to the Haar measure on the unitary group.
 Thus uniformly distributed along the N coordinates.
Spa\v{c}ing and edge statistics

Eigenvalue statistics: let $f : \mathbb{R}^m \to \mathbb{R}$ be a symmetric function with compact support. Let also ρ_N be a scaling and $u \in [-2\sigma, 2\sigma]$.

$$S_N(f) := \sum_{1 \leq i_1 \neq i_2 \ldots \neq i_m \leq N} f(\rho_N(\lambda_{i_1} - u), \ldots, \rho_N(\lambda_{i_m} - u)).$$

- in the bulk: fix $u \in (-2\sigma, 2\sigma)$, $\rho_N = N \rho_{sc}(u)$.

$$\mathbb{E}S_N(f) \to \int_{\mathbb{R}^m} f(x_1, \ldots, x_m) \text{det} K_{\sin}(x_i, x_j) \prod_{i=1}^m dx_i. K_{\sin}(t, s) := \frac{\sin \pi(t - s)}{\pi(t - s)}.$$

- at the edges $u = \pm 2\sigma$, $\rho_N = 2\sigma N^{2/3}$.

$$\mathbb{E}S_N(f) \to \int_{\mathbb{R}^m} f(x_1, \ldots, x_m) \text{det} K_A(x_i, x_j) \prod_{i=1}^m dx_i. K_A(s, t) = \int_0^\infty Ai(t + u)Ai(s + u)du.$$
The universality conjecture

The same local statistics shall be true for a general Wigner matrix

- In the bulk provided $\sigma^2 < \infty$,

- at the edge provided $\mathbb{E}|H_{ij}|^4 < \infty$ AND $\mathbb{E}H_{ij} = 0$.

- eigenvectors shall be "asymptotically Haar distributed" provided $\mathbb{E}|H_{ij}|^4 < \infty$ and...
Universality results

Assume that

$$\exists c > 0, \mathbb{P}(\lvert H_{ij} \rvert \geq tc) \leq e^{-t}$$

with support on at least 3 points and assume that the first four moments of H_{ij} match those of a Gaussian r.v. $\mathbb{E}\lvert \Re H_{ij} \rvert^k \lvert \Im H_{ij} \rvert^l$ identical for all $k + l \leq 4$.

Then, universality in the bulk and at the edge (correlation functions are asymptotically the same).

Let F be a smooth bounded function $F : \mathbb{C}^k \rightarrow \mathbb{R}$ with $\lvert \nabla^j F(x) \rvert = O(N^\delta)$, $j = 1 \ldots, 5$.

Then

$$\lvert \mathbb{E}F((\sqrt{N}u_{ia,pb}), 1 \leq a, b \leq k) - \mathbb{E}F((\xi_{ia,pb}), 1 \leq a, b \leq k) \rvert = o(1)$$

as $N \rightarrow \infty$. Here eigenvectors are determined by $u_{i,1} > 0$, $k \leq N^\delta$ and the ξ_j's are i.i.d. Gaussian $\mathcal{N}(0, 1)$ random variables.
Some ideas of the proof

Start with a GUE;

replace one entry (modulo the symmetry assumption) by another r.v. with same moments.

Impact on both eigenvalues and eigenvectors of this perturbation: Hadamard’s variation formulae for fixed rank perturbation of matrices (algebraic)+ the fact that eigenvectors are delocalized.

Another approach by Erdös-Schlein-Yau and Knowles-Yin: strong connection with local ”semi-circle law”.

Comparison argument
Extensions to other ensembles

One can relax:

• the independence assumption

• the moments assumptions: heavy tailed distribution

\[\mathbb{P}(|H_{ij}| \geq t) = L(t)t^{-\alpha}, \alpha < 4. \]

• Force some of the entries to be zero (introduce some geometry which breaks the invariance of the matrix by permutation)

Focus on the third and second point.
Other ensembles: easy case

Block decomposition:

\[H = \begin{pmatrix} 0 & X \\ X^* & 0 \end{pmatrix} \]

where \(X \) is \(N \times p \) with i.i.d. entries.

Equivalent to sample covariance matrices \(XX^* \). The global behavior is different (Marchenko-Pastur law) but the asymptotic local eigenvalue statistics are the SAME. (Peche, Erdos-Schlein-Yau, Tao-Vu).

Note that local eigenvalue statistics are more robust than global ones.
Random band matrices

Assume that

\[H_{ij} = 0 \text{ unless } |i - j| \leq W/2 \text{ (or } |i - j|_N \leq W/2) . \]

\(W \) bandwidth \(W = cN^\mu \) for some \(0 < c < 1 \) and \(0 < \mu \leq 1 \).

Other entries are i.i.d. with finite variance.

\(\mu = 0 \) diagonal matrix with i.i.d. entries \(\rightarrow \) Wigner random matrix when \(c = \mu = 1 \).

\[H_N = \frac{1}{\sqrt{W}} H. \]

Periodic matrices : Wigner semi-circle.
If \(0 < \mu < 1 \), non periodic : Wigner semi-circle; if \(\mu = 1 \) and \(c < 1 \) then another distribution (not explicit).
An interesting ensemble

Believed to be more complicated than Wigner ensembles: no reference ensemble. There does not exist a “simple” band random matrix ensemble for which eigenvalue/eigenvector statistics can be explicitly computed as for the GUE/GOE.

A flavor of Anderson transition: Band model believed to exhibit a phase transition, depending on μ.

A vector is said to have localization length L if most of its l^2 norm is carried on L coordinates.

Fyodorov-Mirlin (1991) (superanalysis) explain that for Gaussian entries, the localization length of a typical eigenvector in the bulk is of order $L = O(N^{2\mu})$ so that eigenvectors should be localized (resp. delocalized or extended) if $\mu < 1/2$ (resp. $> 1/2$). There exists an intuitive explanation for that scale...
Some eigenvalue statistics

Edge:

Theorem (Sodin 2010)

Consider band matrices with entries having sub-Gaussian tails. Assume that $\mu > 5/6$ then $\lambda_{max}(HW^{-1/2})$ fluctuates in the scale $N^{-2/3}$ and the same limiting distribution as for the GUE (Tracy-Widom law).

If $\mu > 5/6$ no explicit limiting distribution (existence). The joint distribution of largest eigenvalues is unknown.

Eigenvectors (localization/delocalization):

Theorem (Erdos-Yau-Knowles 2011-2012)

Assume that $\mu > 4/5$ and sub-exponential decay of the entries. Then eigenvectors in the bulk are completely delocalized in the large N limit.

Theorem Schenker [2009]. Therein it is proved that $L \ll N^{8\mu}$ for all bulk eigenvectors of some random band matrices with i.i.d. Gaussian entries on the band.
More questions: sparsity, the role of moments for band matrices

• No band structure: there are at most W non zero entries per row. Still Wigner if $\mu < 1$. Eigenvalue statistics? Eigenvector : delocalized or not? Is it sparsity that plays a role? or need some structure (not aware of any conjecture)?

• What is the role of moments in the localization of eigenvectors (conjecture of Bouchaud and Cizeau (1994))? Consider heavy tailed entries

$$\mathbb{P}(|H_{ij}| \geq x) \sim x^{-\alpha}L(x), \quad \alpha > 0 \quad L \text{ slowly varying.}$$

If $\alpha < 2(1 + \mu^{-1})$, then eigenvectors associated to extreme eigenvalues are almost carried by 2 coordinates. This is true for all $\mu \leq 1$. (Soshnikov (2006), Auffinger-Ben Arous-P (2007)).

If $\alpha > 2(1 + \mu^{-1})$, then no eigenvector localized on less than $L := \lfloor N^c \rfloor$ coordinates, for any c s.t. $c < \frac{2}{5} \mu \frac{\alpha - 2}{\alpha - 1}$.
Conclusion

• New techniques are needed: no comparison if the band or sparse matrix is not close to Wigner.

• The geometry of null entries seems to play a role: compare Sample covariance matrices/band/ Wigner: on global scale but on local ones this is not so obvious (apart from band matrices).

• The understanding of eigenvectors is probably more complicated (Wigner: asymptotically Haar; here no idea). Band matrices: some reasons to believe that eigenvectors are localized on successive coordinates, what about sparse matrices?

• The edge of the spectrum seems to be different: indeed expect more localization. No conjectured localization length but there are some reasons to believe that $W^{9/5}$ shall be the one.

• The role of moments in universality for both eigenvalues and eigenvectors.