Social Networks

• A social network is a graph structure where
 – vertices are people or groups and
 – edges are relations between these people or groups
 – Vertices and edges usually carry attributes
 • Name, size, age, count, etc.
Facebook Network Dec. 2010

LinkedIn Profession Network

http://inmaps.linkedinlabs.com/network
InfoVis Co-authoring
(K. Börner et al. 04)

Generally, after loading...
Readability Experiment

Controlled Experiment:
Node Link Diagrams vs. Adjacency Matrices

- **The Tasks:**
 - Tasks related to the overview
 - Number of vertices
 - Number of arcs
 - Tasks related to graph elements
 - Finding an element (a vertex, a link)
 - Finding the most connected vertex (a central actor, a pivot, a hub)
 - Finding a common neighbor
 - Finding a path
 - Random graphs (3 sizes and 3 densities)
 - 2 representations: Node-Link and Matrix

- **Results:**
 - Node-link diagrams are preferable for small sparse graphs (20 vertices)
 - Matrices are more readable wrt dense graphs and medium/large graphs (> 20 vertices) wrt the selected tasks, except path finding

References:
Matrix vs. NodeLink

+
 • Usable without reordering
 • No node overlapping
 • Fast navigation
 • Fast manipulation
 • More readable for some tasks
 • Readable for dense graphs

-
 • Less familiar
 • Use more space
 • Weak for path following tasks

+
 • Familiar
 • Compact
 • More readable for path following
 • More effective for small graphs
 • More effective for sparse graphs

-
 • Useless without layout
 • Node overlapping
 • Edge crossing
 • Not readable for dense graphs
 • Manipulation requires layout computation

Explore
Communicate
Visual Patterns with Ordered Matrices

The Reorderable Matrix

- Introduced by Bertin 67 as a representation for relational data
- Table or Network
- The value table provides details
- The reordered table provides details AND overall structure in the same representation

Problems:
- How to compute a good ordering?
 - Row and column permutations
- how to assess its quality?
Reordering the Matrix

- Interactive or Automated
- Naïve approach:
 - Define an objective function (e.g. favor diagonal placement and dense clusters)
 - Try all permutations and retain the one that maximizes it
 - Problem: for a $n \times m$ table, there are $n! \times m!$ configurations
- Four families of methods to reorder a matrix:
 1. Robinsonian
 2. Dimension reduction
 3. Graph linearization methods
 4. Heuristics

Reordering methods

- Lot’s of methods !
 - Table-based ordering methods
 - Graph linearization
 - Mixed approach

Hierarchical clustering of microarray data

Exploring social networks with matrices
Mixed approach

• Place actors with similar connection patterns next to each other

\[\text{Add information to the adjacency matrix} \]

Participatory Design

• What Social Science researchers
 – Use? (representations, software)
 – Analyze? (datasets)
 – Do? (tasks, exploration process)
 – Want? (goal)

\[\text{Henry and Fekete, IHM'06} \]
\[\text{Henry and Fekete, InfoVis'06} \]

http://insitu.lri.fr/~nhenry/MatrixExplorer
Breakthrough in Social Network Visualization:
Improving Matrices

Several representations:

1. **Combined**
 - MatrixExplorer
 (Henry & Fekete, InfoVis’06)

2. **Augmented**
 - MatLink
 (Henry & Fekete, Interact’07, Best Paper)
 - GeneaQuilts
 (Bezerianos et al., InfoVis’10)

3. **Hybrid**
 - NodeTrix
 (Henry et al., InfoVis’07)
 - CoCoNutTrix
 (Isenberg et al., CG&A’09)

4. **Multiscale**
 - ZAME
 (Elmqvist et al., PacificVis’08)

MatrixExplorer [Henry & Fekete06]
Combined representation

- Matrices to explore
- Node-Link diagrams to present findings
MatLink [Henry&Fekete07]

Augmented representation

- Augmenting matrices with interactive links
- Solving the path-related tasks problem for matrices

MatLink significantly improves matrices

- Controlled experiment
 - 3 vis. x 6 datasets x 5 tasks

Matrix, Node-Link, MatLink

Data: From almost-trees
 To complete-graphs
 Including small-world networks

Tasks:
1. CommonNeighbour,
2. ShortestPath,
3. MostConnected,
4. ArticulationPoint,
5. LargestClique
NodeTrix [Henry et al.07]

Hybrid representation

- Designed for small-world networks
 - Globally sparse
 - Locally dense

- Visualizing dense sub-graphs as matrices
- Interact to create, edit and remove the matrices

Video
NodeTrix: the NetVis Nirvana?

- Can you see every node?
- Can you count each node’s degree?
- Can follow every link from its source to its destination?
- Can you identify clusters and outliers?

- Node Labels
- Link Labels (excentric labels?!)
- … even cluster labels
- Node Attributes
- Link Attributes
- … even clusters attributes
- Directed Graph (links width?!)

... But... beware the graphics overload!

Visual Patterns

Infovis Coauthorship (133 actors)
ZAME: Interactive Large-Scale Graph Visualization [Elmqvist et al. 08]

Visualize very large networks:
- Larger than 10^7 vertices and edges
- Reorder
- Create a pyramid
- Aggregate attributes
- Visualize using enhanced glyphs
Breakthrough in Social Network Visualization: Improving Matrices

Several representations:

1. **Combined**
 - MatrixExplorer
 (Henry & Fekete, InfoVis’06)

2. **Augmented**
 - MatLink
 (Henry & Fekete, Interact’07, Best Paper)
 - GeneaQuilts
 (Bezerianos et al., InfoVis’10)

3. **Hybrid**
 - NodeTrix
 (Henry et al., InfoVis’07)
 - CoCoNutTrix
 (Isenberg et al., CG&A’09)

4. **Multiscale**
 - ZAME
 (Elmqvist et al., PacificVis’08)

Other Related Res

- Van Ham et al. 2004-2005 have shown techniques to navigate in large matrices
- Brandes & Nick 2011 have visualized temporal networks (friendship evolution)
- Dinkla et al. 2012 have introduced Compressed Adjacency Matrices
PhD defense

Connections, Changes, and Cubes: Unfolding Dynamic Networks for Visual Exploration

• Benjamin Bach
• 9 May 2014

Advisors:
Jean-Daniel Fekete
Emmanuel Pietriga

Jury:
Chantal Reynaud
Jarke J. van Wijk
Tim Dwyer
Silvia Miksch
Guy Melançon

Boyandin et al., 2012
Maray Friedrich and Eades, 2001
TempoVis Ahn et al, 2011

2.5D visualization Dwyer, 2004
Gaertler & Wagner, 2005
Timeline

- **Parallel Edge Splatting** Burch et al., 2011
- **Massive Parallel Sequence Views** Willems et al., 2012
- **GraphDice** Bezerianos et al., 2010
- Reda et al., 2012

Ego Network Representations

- **1.5D Visualization** Shi et al., 2011
- **Dynamic Ego Networks** Farrugia et al., 2011

Temporal Aggregation

- **Collberg et al. 2003**
- **Gestalt Lines** Brandes & Nick, 2011
Unfolding Dynamic Networks
Central Model

Interactivity

Nodes

'05 '06 '07

'08 '09 '10
Ceci n'est pas une visualisation 3D
Cubix: http://aviz.fr/cubix

Visualizing Dynamic Networks with Matrix Cubes

submitted to CHI2014

Conclusion

- Visualization of Social Network has been greatly improved in the last years
- Novel representations are denser and more expressive
 - Though they require a little training
- Huge and dense networks can be visualized
 - Relations between clients, suppliers, employees
 - Aggregated over long periods of time
- They need integration in complete systems (commercial or not)
Challenges

- Moving from research prototypes to product
- Study what is a good order
 - What structures can we see?
 - What algorithm will reveal what structure?
 - How to characterize data to fit with algorithms?
- Scalability
- Multivariate networks (several attributes on the vertices and edges)
- Dynamic networks

Conclusion

- Exploring complex data is possible with novel visualizations
 - To make sense of datasets, check for quality, etc.
- It requires a bit of time to understand the visual mapping
 - About 10mn to 1h
- It also requires a bit of time to learn the interactions
- Visualization Literacy is necessary to realize how much you will gain from investing this time
References

• Frank van Ham, Hans-Jörg Schulz, Joan Morris DiMicco: Honeycomb: Visual Analysis of Large Scale Social Networks. INTERACT (2) 2009: 439–442